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Abstract
We show that the best way to study the relationship between quantum
entanglement and quantum squeezing for the multimode case is through
constructing the new n-pair entangled state representation |η〉n. The explicit
form of the 2n-mode squeezing operator which squeezes the n-pair entangled
state can be directly derived via the transition from |η〉n to |Mη〉n, where M is
an n × n complex matrix, and the technique of integration within an ordered
product of operators. We also analyze the squeezing properties of the 2n-mode
squeezed state for M being Hermitian, and obtain the variances of the 2n-mode
quadrature operators in the 2n-mode squeezed vacuum state with a concise
result; the condition for reaching the minimum of the uncertainty relationship
is also investigated.

PACS numbers: 42.50.Dv, 03.65.Ud

1. Introduction

Recently, quantum entanglement has been paid much attention because of its applications in
quantum optics [1, 2] and quantum information. It was first pointed out by Einstein, Podolsky
and Rosen (EPR) [3] in their famous paper arguing the incompleteness of quantum mechanics.
EPR introduced the common eigenwavefunction for two particles’ relative position Q1 − Q2

(with the relative distance Q0) and their total momentum P1 + P2 (with the eigenvalue P0),

�(Q1,Q2) = exp[iP0(Q1 + Q2)/2]
1

2π

∫
dp exp[ip(Q1 − Q2 − Q0)], (1)

which describes a sharply correlated two-particle system. Enlightened by EPR, in [4, 5] the
simultaneous eigenstate |η〉 of the two commutative operators Q1 − Q2, P1 + P2 is found in
two-mode Fock space:

|η〉 = exp
[− 1

2 |η|2 + ηa
†
1 − η∗a†

2 + a
†
1a

†
2

]|00〉, (2)
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where η = η1 + iη2 is a complex number, |00〉 is the two-mode vacuum state, ai, a
†
i , i = 1, 2,

are the two-mode Bose annihilation and creation operators in Fock space, |00〉〈00| =:
exp

[−a
†
1a1 − a

†
2a2
]
: . With the help of the technique of integration within an ordered product

(IWOP) of operators [6], we have the completeness of the states |η〉:
∫

d2η

π
|η〉〈η| =

∫
d2η

π
exp

[−|η|2 + ηa
†
1 − η∗a†

2 + a
†
1a

†
2

]|00〉〈00| exp[η∗a1 − η∗a2 + a1a2]

=
∫

d2η

π
: exp

[−|η|2 + η
(
a
†
1 − a2

)− η∗(a†
2 + a1

)
+ a

†
1a

†
2 + a1a2 − a

†
1a1 − a

†
2a2
]
:

= 1. (3)

Furthermore, the states |η〉 are orthonormal, i.e.

〈η′|η〉 = πδ(2)(η′ − η). (4)

It is remarkable that the two-mode squeezing operator [9, 13] has a natural representation in
the entangled state |η〉 [7]:

S2 ≡
∫

d2η

μπ

∣∣∣∣ ημ
〉
〈η|, (5)

where μ = eλ is a real squeezing parameter. This fact provides an intuitive explanation as
to why the signal mode and the idler mode of a two-mode squeezed state produced from a
parametric down-conversion process are entangled with each other and constitute an entangled
state.

Using the technique of IWOP to perform the integration in equation (5) we have

S2 = exp
[
λ
(
a
†
1a

†
2 − a1a2

)]
, S2|η〉 = 1

μ

∣∣∣∣ ημ
〉
, (6)

so the two-mode squeezing operator squeezes |η〉 in a natural way. This indicates that at least
for the two-mode case squeezing is associated with quantum entanglement. An interesting
question thus naturally arises: is there a 2n-mode squeezing operator which squeezes the n-
pair entangled state? If yes, what is the corresponding explicit form of the 2n-mode squeezing
operator?

In order to answer these questions, hinted by equation (6), we should employ the
technique of IWOP to construct the n-pair entangled state; this would bring convenience
for studying the 2n-mode squeezing. This paper is arranged as follows. In section 2, we
construct the n-pair entangled state representation |η〉n. In section 3, we introduce the 2n-
mode squeezing operator in the |η〉n representation by constructing the bra-ket integration
operator U(M) =

√
det(M†M)

∫ d2η
πn |Mη〉nn〈η|, where M is an n × n nonsingular complex

matrix, and then use the IWOP technique to derive its normally ordered form. Then in
section 4, the explicit form of the 2n-mode squeezing operator in the |ξ〉n representation,
which is conjugate to |η〉n, is also presented. In order to show the squeezing behavior more
clearly, in section 5 we present the compact form of the 2n-mode squeezing operator and
analyze the squeezing properties for M being Hermitian. In section 6, we derive the variances
of the 2n-mode quadrature operators in a 2n-mode squeezed vacuum state with a concise result;
the condition for reaching the minimum of the uncertainty relationship is also investigated.
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2. n-pair entangled state representation |η〉n in Fock space

First of all, we introduce the n-pair entangled state

|η〉n ≡ |η1〉|η2〉 · · · |ηn〉 ≡

∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎝

η1

η2

...

ηn

⎞
⎟⎟⎟⎠
〉

= exp

(
−1

2
η∗T η + A†T η − B†T η∗ + A†T B†

)
|00〉, (7)

where

η = (η1, η2, . . . , ηn)
T , η∗ = (η∗

1, η
∗
2, . . . , η

∗
n)

T ,

ηk = η1k + iη2k, k = 1, 2, . . . , n, are complex numbers,

A† = (
a
†
1, a

†
3, . . . , a

†
2n−1

)T
, B† = (

a
†
2, a

†
4, . . . , a

†
2n

)T
,

and |00〉 is a 2n-mode vacuum state, |00〉〈00| =: exp[−A†T A − B†T B]:. Here and henceforth,
the superscript ‘T’ indicates the transpose matrix of the corresponding matrix. By virtue of
equation (3), the completeness of the states |η〉n can be proved, i.e.∫

d2η

πn
|η〉nn〈η| =

∫
d2η

πn
exp(−η∗T η + A†T η − B†T η∗

+ A†T B†)|00〉〈00| exp(AT η∗ − BT η + AT B)

=
∫

d2η

πn
: exp[−η∗T η + (A†T − BT )η

+ (AT − B†T )η∗ + A†T B† + AT B − A†T A − B†T B]:

= 1; (8)

here and henceforth we define d2η = d2η1 d2η2 · · · d2ηn for simplicity. Using equation (4),
we demonstrate that |η〉n are orthonormal, i.e.

n〈η′|η〉n = πnδ(2)(η′
1 − η1)δ

(2)(η′
2 − η2) · · · δ(2)(η′

n − ηn) = πnδ(η′ − η). (9)

The eigenequations satisfied by the state |η〉n are

(A − B†)|η〉n = η|η〉n, (B − A†)|η〉n = −η∗|η〉n. (10)

Since

Qk = 1√
2

(
ak + a

†
k

)
, Pk = 1√

2i

(
ak − a

†
k

)
, (11)

we obtain

(QA − QB)|η〉n =
√

2η1|η〉n, (12)

and

(PA + PB)|η〉n =
√

2η2|η〉n, (13)

where QA = (Q1,Q3, . . . ,Q2n−1)
T , QB = (Q2,Q4, . . . , Q2n)

T .
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3. Normally ordered 2n-mode squeezing operator derived through the |η〉n

representation

Enlightened by equation (5), we construct the following ket-bra integration operator which
maps |η〉n to

√
det(M†M)|Mη〉n in the |η〉n representation:

U(M) =
√

det(M†M)

∫
d2η

πn
|Mη〉nn〈η|, (14)

where M = M1 + iM2 is an n × n nonsingular complex matrix. As usual, the Hermitian
conjugate of M is defined as M† = MT

1 − iMT
2 . It is easy to see that U(M) is unitary, i.e.

U †(M)U(M) = det(M†M)

∫
d2η′ d2η

π2n
|η′〉nn〈Mη′|Mη〉nn〈η|

= det(M†M)

∫
d2η′ d2η

π2n
|η′〉nn〈η|δ(M(η′ − η))

=
∫

d2η′ d2η

πn
|η′〉nn〈η|δ(η − η′)

= 1. (15)

We also have the multiplication rule (group property, isomorphism)

U(M′)U(M) =
√

det(M′†M′)
√

det(M†M)

∫
d2η′ d2η

π2n
|M′η′〉nn〈η′|Mη〉nn〈η|

=
√

det((M′M)†M′M)

∫
d2η′ d2η

πn
|M′η′〉nn〈η|δ(η′ − Mη)

=
√

det((M′M)†M′M)

∫
d2η

πn
|M′Mη〉nn〈η|

= U(M′M). (16)

The transformation on QA − QB and PA + PB induced by U(M) is

U †(M)(QA − QB)U(M) = U †(M)
√

det(M†M)

∫
d2η

πn
(QA − QB)|Mη〉nn〈η|

= U †(M)
√

det(M†M)

∫
d2η

πn

√
2(Mη)1|Mη〉nn〈η|

= U †(M)
√

det(M†M)

∫
d2η

πn
|Mη〉nn〈η|

√
2 (M1η1 − M2η2)

= M1(QA − QB) − M2(PA + PB) (17)

and

U †(M)(PA + PB)U(M) = U †(M)
√

det(M†M)

∫
d2η

πn
(PA + PB)|Mη〉nn〈η|

= U †(M)
√

det(M†M)

∫
d2η

πn

√
2(Mη)2|Mη〉nn〈η|

= U †(M)
√

det(M†M)

∫
d2η

πn

√
2|Mη〉nn〈η| (M1η2 + M2η1)

= M1(PA + PB) + M2(QA − QB). (18)

We can combine equations (17) and (18) as a more compact expression

U †(M)OU(M) = MO, (19)

4
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where

O = (QA − QB) + i(PA + PB). (20)

That is, if we pretend that QA−QB and PA+PB are real, and separate the ‘real’ and ‘imaginary’
parts of both sides of equation (19), we retrieve equations (17) and (18).

To get the explicit form of U(M), we use the IWOP technique

U(M) =
√

det(M†M)

∫
d2η

πn
|Mη〉nn〈η|

=
√

det(M†M)

∫
d2η

πn
exp

(
−1

2
η∗T M†Mη + A†T Mη − B†T M∗η∗ + A†T B†

)
|00〉〈00|

× exp

(
−1

2
η∗T η + AT η∗ − BT η + AT B

)

=
√

det(M†M)

∫
d2η

πn

: exp

[
− 1

2η∗T (I + M†M)η + (A†T M − BT )η − (B†T M∗ − AT )η∗

+A†T B† + AT B − A†T A − B†T B,

]
:, (21)

where I is the n × n unit matrix. Further, using the integral formula∫
d2nZ
πn

exp(−Z∗T ζZ + ξT Z + ηT Z∗) = 1

det ζ
exp[ξT ζ−1η],

where d2nZ = dz11 dz12 dz21 dz22 · · · dz1n dz2n, Z = (Z1, Z2, . . . , Zn)
T , ζ is an n×n positive-

definite matrix, ξ and η are the complex column matrices, we perform the final integral in
equation (21) and obtain the explicit form of U(M)

U(M) = 2n
√

det(M†M)

det(1 + M†M)
: exp[−2(A†T M − BT )(1 + M†M)−1(M†B† − A)

+ A†T B† + AT B − A†T A − B†T B]:

= 2n
√

det(M†M)

det(1 + M†M)
exp[A†T (1 − 2M(1 + M†M)−1M†)B†]

· exp[A†T ln(2M(1 + M†M)−1)A + B†T ln(2M∗(1 + MT M∗)−1)B]

· exp

[
BT M†M − 1

1 + M†M
A
]

, (22)

where we have applied the operator identity

exp[A†T KA] =: exp[A†T (exp K − 1)A] : .

4. The form of 2n-mode squeezing operator U (M) in the |ξ〉n representation

We construct another 2n-mode entangled state as

|ξ〉n ≡ |ξ1〉 |ξ2〉 · · · |ξn〉 ≡

∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎝

ξ1

ξ2

...

ξn

⎞
⎟⎟⎟⎠
〉

= exp

(
−ξ∗T ξ

2
+ A†T ξ + B†T ξ∗ − A†T B†

)
|00〉, (23)

where

ξ = (ξ1, ξ2, . . . , ξn)
T , ξ∗ = (ξ ∗

1 , ξ ∗
2 , . . . , ξ ∗

n )T ,

5
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ξk = ξ1k + iξ2k, k = 1, 2, . . . , n,

A† = (
a
†
1, a

†
3, . . . , a

†
2n−1

)T
, B† = (

a
†
2, a

†
4, . . . , a

†
2n

)T
.

Similarly, |ξ〉n are complete and orthonormal:∫
d2ξ

πn
|ξ〉nn〈ξ| = 1

n〈ξ′|ξ〉n = πnδ(ξ′ − ξ).

(24)

The relationship between |ξ〉n and |η〉n is

n〈ξ|η〉n = 1

2n
exp

[−i
(
ηT

1 ξ2 − ηT
2 ξ1

)]
,

|η〉n =
∫

d2ξ

πn
|ξ〉nn〈ξ|η〉n =

∫
d2ξ

(2π)n
|ξ〉n exp

[−i
(
ηT

1 ξ2 − ηT
2 ξ1

)]
,

(25)

where d2ξ = d2ξ1 d2ξ2 · · · d2ξn, η1 = (η11, η12, . . . , η1n)
T , η2 = (η21, η22, . . . , η2n)

T , ξ1 =
(ξ11, ξ12, . . . , ξ1n)

T , ξ2 = (ξ21, ξ22, . . . , ξ2n)
T . From equation (25) we know that n〈ξ|η〉n is

a Fourier transformation kernel, so |ξ〉n is conjugate to |η〉n. Furthermore, |ξ〉n satisfies the
following eigenvalue equations:

(QA + QB)|ξ〉n =
√

2ξ1|ξ〉n, (26)

and

(PA − PB)|ξ〉n =
√

2ξ2|ξ〉n. (27)

The 2n-mode squeezing operator U(M) can be expressed in the representation |ξ〉n as

U(M) =
√

det(M†M)

∫
d2η

πn
|Mη〉nn〈η|

=
√

det(M†M)

∫
d2η

πn

∫
d2ξ

(2π)n
d2ξ′

(2π)n
|ξ〉nn〈ξ′|

× exp
[−i

(
(Mη)T1 ξ2 − (Mη)T2 ξ1 − ηT

1 ξ′
2 + ηT

2 ξ′
1

)]
=
√

det(M†M)

∫
d2ξ

(2π)n
d2ξ′

(2π)n
|ξ〉nn〈ξ′| (2π)2n

πn
δ(ξ′ − M†ξ)

=
√

det(M†M)

∫
d2ξ

πn
|ξ〉nn

〈
M†ξ

∣∣ . (28)

Hence the transformation on QA + QB and PA − PB induced by U(M) is

U †(M)(QA + QB)U(M) =
√

det(M†M)U †(M)(QA + QB)

∫
d2ξ

πn
|ξ〉nn〈M†ξ|

=
√

det(M†M)U †(M)

∫
d2ξ

πn

√
2ξ1|ξ〉nn〈M†ξ|

= NT
1 (QA + QB) + NT

2 (PA − PB) (29)

and

U †(M)(PA − PB)U(M) =
√

det(M†M)U †(M)(PA − PB)

∫
d2ξ

πn
|ξ〉nn〈M†ξ|

=
√

det(M†M)U †(M)

∫
d2ξ

πn

√
2ξ2|ξ〉nn〈M†ξ|

= NT
1 (PA − PB) − NT

2 (QA + QB), (30)

where for the simplicity of writing we have introduced N = N1 + iN2 ≡ M−1.

6
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Similar to (19), we can combine equations (29) and (30) to

U †(M)O′U(M) = N†O′, (31)

where

O′ = (QA + QB) + i(PA − PB). (32)

5. The compact form of U (M) and its physical interpretation

In order to show the squeezing behavior of U(M) more clearly, based on equations (17), (18),
(29) and (30), we can write down the transformation on A†, A, B†, B:

U †(M)(A†T , B†T , AT , BT )U(M) = (A†T , B†T , AT , BT )

⎛
⎜⎜⎜⎜⎝

M†+N
2 0 0 N−M†

2

0 MT +N∗
2

N∗−MT

2 0

0 N∗−MT

2
MT +N∗

2 0
N−M†

2 0 0 M†+N
2

⎞
⎟⎟⎟⎟⎠.

(33)

Thus according to [12], we obtain the compact form of U(M) straightforwardly:

U(M) = exp
[− 1

2 (A†T , B†T , AT , BT )Γ(A†T , B†T , AT , BT )T
]
, (34)

where

Γ = ln

⎛
⎜⎜⎜⎜⎝

M†+N
2 0 0 N−M†

2

0 MT +N∗
2

N∗−MT

2 0

0 N∗−MT

2
MT +N∗

2 0
N−M†

2 0 0 M†+N
2

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

= ln γ ·

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠. (35)

We note that the matrix γ can be block diagonalized by the orthogonal matrix

R =

⎛
⎜⎜⎜⎜⎝

1√
2

0 0 1√
2

0 1√
2

1√
2

0

0 −1√
2

1√
2

0
−1√

2
0 0 1√

2

⎞
⎟⎟⎟⎟⎠ , (36)

γ = R diag{M†, MT , N∗, N}R−1. (37)

So we can calculate the exact form of the matrix Γ:

Γ =

⎛
⎜⎜⎜⎜⎜⎝

0 ln M+ln M†

2
ln M†−ln M

2 0
ln MT +ln M∗

2 0 0 ln MT −ln M∗
2

ln M∗−ln MT

2 0 0 − ln M∗−ln MT

2

0 ln M−ln M†

2
− ln M−ln M†

2 0

⎞
⎟⎟⎟⎟⎟⎠ . (38)

7
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Finally, we have the compact form of the operator

U(M) = exp

[
BT ln M + ln M†

2
A − A†T ln M + ln M†

2
B†

+ A†T ln M − ln M†

2
A − BT ln M − ln M†

2
B†

]
. (39)

For simplicity, we define Λ = ln M+ln M†

2 as the Hermitian part of ln M and iΘ = ln M−ln M†

2 as
the anti-Hermitian part of ln M, i.e.

Λ† = Λ, Θ† = Θ

ln M = Λ + iΘ;
(40)

we have the more compact form of equation (39)

U(M) = exp[BT ΛA − A†T ΛB† + i(A†T ΘA − BT ΘB†)]. (41)

Since Λ and Θ are Hermitian, we can find n × n unitary matrices u1, u2 that diagonalize Λ
and Θ, respectively,

u1Λu
†
1 = diag{λ1, . . . , λn}

u2Θu
†
2 = diag{θ1, . . . , θn}.

(42)

If Θ = 0, that means M = exp 
 is positive definite, then

U(M) = exp[BT ΛA − A†T ΛB†]

= exp

⎡
⎣−

n∑
j=1

λj

(
A′†

j B′†
j − A′

j B′
j

)⎤⎦

=
n∏

j=1

exp
[−λj

(
A′†

j B′†
j − A′

j B′
j

)]
, (43)

where

A′ = u1A, B′ = u∗
1B,

[A′
i , A′

j ] = [B′
i , B′

j ] = 0[
B′

i , A†′
j

] = [
A′

i , B†′
j

] = 0[
A′

i , A†′
j

] = [
B′

i , B†′
j

] = δij . (44)

Comparing equation (43) with equation (6), we can find that U(M) describes pure squeezing
between the new modes A′ and B′ with squeezing parameters −λi .

Similarly, if Λ = 0, that means M = exp [iΘ] is unitary, then

U(M) = exp[i(A†T ΘA − BT ΘB†)]

= exp

⎡
⎣i

n∑
j=1

θj

(
A′′†

j A′′
j − B′′†

j B′′
j

)⎤⎦

=
n∏

j=1

exp
[
iθj

(
A′′†

j A′′
j − B′′†

j B′′
j

)]
, (45)

8
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where

A′′ = u2A, B′′ = u∗
2B

[A′′
i , A′′

j ] = [B′′
i , B′′

j ] = 0[
B′′

i , A†′′
j

] = [
A′′

i , B†′′
j

] = 0[
A′′

i , A†′′
j

] = [
B′′

i , B†′′
j

] = δij . (46)

Equation (45) shows that if Λ = 0, then U(M) describes the pure simultaneous phase shift
with equal angles θj but the opposite direction of new modes A′′ and B′′. In general cases that
Λ �= 0 and Θ �= 0, U(M) describes the mixed effect of both squeezing and phase shift.

Since it is Λ and Θ that describe the physics in U(M), not M itself, and the real M does
not guarantee Θ = 0, it makes no sense to restrict M to be real. It is appropriate to define
U(M) for the arbitrary nonsingular complex matrix M.

6. The squeezing properties of the 2n-mode squeezing operator

Theoretically, the 2n-mode squeezed state is constructed by the 2n-mode squeezing operator
acting on the 2n-mode vacuum state; it follows that

U(M)|00〉 = 2n
√

det(M†M)

det(1 + M†M)
exp[A†T (1 − 2M(1 + M†M)−1M†)B†]|00〉

≡ ‖00〉. (47)

The corresponding optical quadrature phase amplitudes can be expressed as follows:

X1 = 1

2
√

n

2n∑
i=1

Qi, X2 = 1

2
√

n

2n∑
i=1

Pi, [X1, X2] = i

2
. (48)

The variances of the 2n-mode quadrature are defined as

(�Xi)
2 = 〈00‖X2

i ‖00〉 − (〈00‖Xi‖00〉)2 , i = 1, 2. (49)

From equations (18) and (29), we have

〈00‖X1 ‖00〉 = 〈00|U †(M)X1U(M)|00〉

= 1

2
√

n

n∑
j=1

〈00|U †(M) (QA + QB)j U(M)|00〉

= 1

2
√

n

n∑
j,k=1

〈00|(NT
1

)
jk

(QA + QB)k +
(
NT

2

)
jk

(PA − PB)k|00〉 = 0 (50)

and

〈00‖X2 ‖00〉 = 〈00‖U †(M)X2U(M) ‖00〉

= 1

2
√

n

n∑
j=1

〈00|U †(M)(PA + PB)jU(M)|00〉

= 1

2
√

n

n∑
j,k=1

〈00|M1jk(PA + PB)k + M2jk(QA − QB)k|00〉 = 0. (51)

9
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The variances of the quadrature in ‖00〉 are

(�X1)
2 = 〈00‖X2

1‖00〉

= 1

4n
〈00|U †(M)

[
n∑

k=1

(QA + QB)k

]2

U(M)|00〉

= 1

4n

n∑
j,k,α,β=1

〈00|[(NT
1

)
jα

(QA + QB)α +
(
NT

2

)
jα

(PA − PB)α
]

· [(NT
1

)
kβ

(QA + QB)β +
(
NT

2

)
kβ

(PA − PB)β
]|00〉

= 1

4n

n∑
j,k,α,β=1

(
NT

1

)
jα

(
NT

1

)
kβ

〈00| (QA + QB)α (QA + QB)β |00〉

+
1

4n

n∑
j,k,α,β=1

(
NT

2

)
jα

(
NT

2

)
kβ

〈00| (PA − PB)α (PA − PB)β |00〉

+
1

4n

n∑
j,k,α,β=1

(
NT

1

)
jα

(
NT

2

)
kβ

〈00| (QA + QB)α (PA − PB)β |00〉

+
1

4n

n∑
j,k,α,β=1

(
NT

2

)
jα

(
NT

1

)
kβ

〈00| (PA − PB)α (QA + QB)β |00〉

= 1

4n

n∑
j,k,α=1

[(
NT

1

)
jα

(
NT

1

)
kα

+
(
NT

2

)
jα

(
NT

2

)
kα

]

= 1

4n

n∑
j,k=1

(
NT

1 N1 + NT
2 N2

)
jk

= 1

4n

n∑
j,k=1

(N†N)jk, (52)

where we have used the identities

〈00|(QA + QB)α(QA + QB)β |00〉 = δαβ,

〈00| (PA − PB)α (PA − PB)β |00〉 = δαβ,

〈00|(QA + QB)α(PA − PB)β |00〉 = 0,

〈00|(PA − PB)α(QA + QB)β |00〉 = 0.

(53)

Similarly,

(�X2)
2 = 〈00‖X2

2‖00〉 = 1

4n
〈00‖

[
n∑

k=1

(PA + PB)k

]2

‖00〉

= 1

4n

n∑
j,k,,α,β=1

〈00|[M1jα(PA + PB)α + M2jα(QA − QB)α]

× [M1kβ(PA + PB)β + M2kβ(QA − QB)β]|00〉

= 1

4n

n∑
j,k,α,β=1

M1jαM1kβ〈00|(PA + PB)α(PA + PB)β |00〉

10
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+
1

4n

n∑
j,k,α,β=1

M2jαM2kβ〈00|(QA − QB)α(QA − QB)β |00〉

+
1

4n

n∑
j,k,α,β=1

M1jαM2kβ〈00|(PA + PB)α(QA − QB)β |00〉

+
1

4n

n∑
j,k,α,β=1

M2jαM1kβ〈00|(QA − QB)α(PA + PB)β |00〉

= 1

4n

n∑
j,k,α=1

[M1jαM1kα + M2jαM2kα]

= 1

4n

n∑
j,k=1

(
M1MT

1 + M2MT
2

)
jk

= 1

4n

n∑
j,k=1

(MM†)jk, (54)

where we have used the identities

〈00|(PA + PB)α(PA + PB)β |00〉 = δαβ,

〈00|(QA − QB)α(QA − QB)β |00〉 = δαβ

〈00|(PA + PB)α(QA − QB)β |00〉 = 0,

〈00|(QA − QB)α(PA + PB)β |00〉 = 0.

(55)

As a general conclusion in quantum mechanics, for the arbitrary state |ψ〉,
〈ψ |(�X1)

2|ψ〉〈ψ |(�X2)
2|ψ〉 � 1

4 〈ψ ||[X1, X2]|2|ψ〉 = 1
16 , (56)

we wish to prove this inequality and figure out whether and when expression (29) can take
equal sign for the squeezed vacuum state |ψ〉 = ‖00〉.

For an arbitrary positive-definite matrix S = u† diag{s1, . . . , sn}u, where u is a unitary
matrix and si are the eigenvalues of S, we have

n∑
i,j=1

Sij =
n∑

i,j,k,l=1

u∗
kiskδklulj =

n∑
i,j,k=1

sku
∗
kiukj =

n∑
k=1

skck, (57)

where for simplicity we define n non-negative numbers

ck =
n∑

i,j=1

u∗
kiukj =

∣∣∣∣∣
n∑

i=1

uki

∣∣∣∣∣
2

� 0. (58)

ci satisfy the identity

n∑
i=1

ci =
n∑

i,j,k=1

u∗
kiukj =

n∑
i,j=1

δij = n. (59)

If we define the row-vectors of the unitary matrix u as ui = {ui1, . . . , uin} and v0 =
{1, . . . , 1} , equation (58) can be written as

ci = |ui · v0|2 . (60)
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So ⎛
⎝ n∑

i,j=1

(S−1)ij

⎞
⎠
⎛
⎝ n∑

i,j=1

Sij

⎞
⎠ =

(
n∑

i=1

1

si

ci

)(
n∑

i=1

sici

)

=
n∑

i=1

c2
i +

∑
i>j

(
si

sj

+
sj

si

)
cicj

=
(

n∑
i=1

ci

)2

+
∑
i>j

(√
si

sj

−
√

sj

si

)2

cicj

= n2 +
∑
i>j

(√
si

sj

−
√

sj

si

)2

cicj

� n2. (61)

Hence from (52) and (54) we have (note N ≡ M−1)

(�X1)
2(�X2)

2 =
⎡
⎣ 1

4n

n∑
j,k=1

(N†N)jk

⎤
⎦
⎡
⎣ 1

4n

n∑
j,k=1

(MM†)jk

⎤
⎦

=
(

1

4n

)2
⎡
⎣ n∑

j,k=1

((MM†)−1)jk

⎤
⎦
⎡
⎣ n∑

j,k=1

(MM†)jk

⎤
⎦

�
(

1

4n

)2

n2 = 1

16
, (62)

where in the last step we considered MM† = S, a positive definite matrix, and used
equation (61).

In order to take equal sign in (61), a trivial condition is that all the eigenvalues of MM†

are the same, si ≡ s, i.e. MM† = sI, which is not very interesting. In the case that si �= sj

for all i �= j , we must have cicj ≡ 0. Since
∑n

i=1 ci = n, there must be an i0 s.t. ci0 �= 0, so
ci ≡ 0 for all i �= i0. By definition, ci = |ui · v0|2, in other words, vectors ui are orthogonal
to v0 for i �= i0. Since u is a unitary matrix, the row vectors of u are orthogonal to each other
and form a complete set of the n-dimensional complex vector space. This implies that the i0th
row of u is ui0 = eiϕ√

n
{1, . . . , 1}, where eiϕ is an irrelevant phase factor. Thus, in the case

that there is one row ui0 = eiϕ√
n

{1, . . . , 1} in the matrix u, we have (�X1)
2(�X2)

2 ≡ 1
16 ,

particularly, the variances take the simple form (�X1)
2 = 1

/(
4si0

)
, (�X2)

2 = si0/4, which
indicates that ‖00〉 is the correct 2n-mode squeezed state.

6.1. Physical implications

Through the above discussions we can see clearly the relationship between the multimode
squeezed state and the entangled state; thus, if one wants to investigate entanglement involved
in a many-body system, one may give rise to the multimode squeezed state. On the other
hand, due to the orthonormal property of |η〉n as shown in equation (9), we have

U(M)|η〉n =
√

det(M†M)|Mη〉n,
12
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so the squeezing operator squeezes the entangled state |η〉n in a natural way. Thus, the
wavefunction of the squeezed vacuum state in the entangled state representation can easily be
derived:

n〈η‖00〉 = n〈η|
√

det(M†M)

∫
d2η′

πn
|Mη′〉nn〈η′|00〉 = n〈M−1η|00〉,

so the best representation for studying various non-classical properties of the multimode
squeezing state is |η〉n.

7. Summary

In summary, we have developed the concept of the bipartite EPR entangled state to the case of
2n particle systems. With the help of the IWOP technique, we have constructed the 2n-mode
squeezing operator which squeezes the n-pair entangled state and the squeezing properties
of it are also discussed for M being Hermitian. We have seen that there is an intrinsic
relationship between quantum entanglement and quantum squeezing for the multimode case
through constructing the entangled state representation |η〉n. Its further applications in the
study of multipartite teleportation, quantum dense coding and entangled fractional Fourier
transformation are under consideration. We expect that the multimode squeezing effect may
be observed or implemented in multiphoton fluorescence, multiphoton ionization and two-
photon lasing processes.
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